
Exploiting a Coalmine

Abusing Complex Bugs in Webkit's

RenderArena

Georg Wicherski

Senior Security Researcher

Wednesday, April 11, 2012

WebKit

■ Based on KHTML (KDE)
■ Apple forked in 2001

■ Chrome, (Mobile) Safari, Android Browser, Qt, PS 3 Vita, …
■ Rule of Thumb: If it’s not Internet Explorer or Firefox, it uses WebKit

■ SLOC: 753,572 (Android 2.3.5)
■ If that’s not enough: libpng, libtiff, …

TCmalloc

DLmalloc

#if PLATFORM(ANDROID)

 #define WEBCORE_NAVIGATOR_VENDOR "Google Inc."

 #define USE_SYSTEM_MALLOC 1

 …

■ bionic (Android’s libc) uses Doug Lea’s malloc
■ This is the same allocator glibc uses

■ Without safe unlinking checks

■ DLmalloc coalesces adjacent free chunks
■ No per thread caches or free-lists

Document Object Model Tree

Render Tree

“At the heart of rendering is the render tree. The render tree is
very similar to the DOM in that it is a tree of objects, where each
object can correspond to the document, elements or text nodes.
The render tree can also contain additional objects that have no
corresponding DOM node.

The base class of all render tree nodes is RenderObject.”

http://www.webkit.org/blog/114/webcore-rendering-i-the-basics/

http://www.webkit.org/blog/114/webcore-rendering-i-the-basics/
http://www.webkit.org/blog/114/webcore-rendering-i-the-basics/
http://www.webkit.org/blog/114/webcore-rendering-i-the-basics/
http://www.webkit.org/blog/114/webcore-rendering-i-the-basics/
http://www.webkit.org/blog/114/webcore-rendering-i-the-basics/
http://www.webkit.org/blog/114/webcore-rendering-i-the-basics/
http://www.webkit.org/blog/114/webcore-rendering-i-the-basics/
http://www.webkit.org/blog/114/webcore-rendering-i-the-basics/
http://www.webkit.org/blog/114/webcore-rendering-i-the-basics/

Render Object Creation

■ The Render Tree is updated every time rendering changes
■ This includes when objects are repositioned and text flow changes

■ Resizing Window, Scrolling (on Android anyway), …

■ A simple DOM Text Node can get additonal associated Render
Tree children just be resizing your window

Allocations and deallocations happen very frequently

The RenderArena

“Yo Dawg, I heard you like allocators, so I put an

allocator into your allocator, so you can allocate

while you’re allocating!”

■ RenderArena is the allocator for RenderObjects

■ A RenderArena consists of multiple Arenas that
are allocated with... fastMalloc!
■ Recall that fastMalloc is an alias for DLmalloc on

Android

RenderArena Integration

void* RenderObject::operator new(size_t sz, RenderArena* renderArena) throw()

{

 return renderArena->allocate(sz);

}

■ Every Render Tree element is derived from RenderObject
■ operator new is inherited by every Render*

■ All allocations for RenderObjects happen on the Arena sub-heap!
■ Unfortunately, this means also nothing else can be allocated there.

RenderArena Allocation

■ Allocation sizes rounded up to 8 bytes
■ Only for alignment, low bits are meaningless

■ Attempts to recycle a free chunk of requested size
■ Simple single-linked list, much like FreeList

■ Simple forward allocation (current & limit pointers)
■ No chunk headers or other inline information

RenderArena Deallocation

■ Free chunks are put into a single-linked list
■ Pointer to next free chunk is first 32bit word in chunk

■ There is no coalescing of free chunks!
■ This allows for easier (sub-)heap massaging

Enter the Coalmine

■ There is a lot of bugs in the Render Tree
■ And they are mostly considered “just crashes”

■ Fixes are not backported for Android, takes some time until they end up
in Chrome mainline (after being public on Webkit Trac)

■ Invalid Casts / Type Confusion
■ Pass around RenderObject *, cast to Render* with wrong expectations

■ Use-after-free
■ Happens when stuff gets removed due to re-CSS-ing

Use-After-Free Exploitation

“The Wicherski”

■ All allocations in the RenderArena are by definition C++ objects

■ RenderObject has virtual functions, so all allocations have a vtable

■ vtable overlaps with the free chunks single-linked list pointers

a. Free element that resembles fake vtable

b. Trigger free of buggy element, so it points to fake vtable

c. Trigger Use-After-Free virtual call

Use-After-Free Exploitation

“The Wicherski”

■ It is extremely difficult to build a fake vtable with
RenderObjects
■ RenderObjects are small and contain only pointers and

some CSS value copies

■ CSS Values by definition have the high nibble
cleared
■ The CSS code internally uses high 4 bits for flags

■ Flags are cleared before values arrive in rendering code

Use-After-Free Exploitation

“The Wicherski”

■ The heap is rwx on Android ≤ 2.2.1 and is reachable

■ There is one plain integer that is copied
■ List Item value (for setting numbered list item values)

■ For our convenience, assigned to two consecutive members

■ Read the code, we can even get a pointer to an
arbitrary long list of integers we control…

Use-After-Free Exploitation

“The Refined Aubizziere”

■ RenderArena allocations come from the system allocator

■ We can control memory contents if not overwritten

a. Spray Arena sized objects (e.g. strings) and free holes

b. Free small dummy element at end of Arena

c. Trigger Use-After-Free virtual call

+ Enables arbitrary vtable contents

− Requires reliable heap allocation and free primitives
■ We cannot “just create strings in JavaScript” because of GC

■ unescape (praised by Immunity) is only one free

■ DLmalloc will happily coalesce chunks, split large chunks, …

■ Have fun debugging this with GDB!

We need something better (and faster) than GDB to
debug the heap allocations!

Use-After-Free Exploitation

“The Refined Aubizziere”

CrowdStrike AndroProbe

