EXPLOITING A COALMINE

ABUSING COMPLEX BuGSs IN WEBKIT S

: = RENDERARENA

GEORG WICHERSKI

k -‘ Q\ = SENIOR SECURITY RESEARCHER
C‘r'au_/d — I‘Pll—:e (i)

WEDNESDAY, APRIL 11, 2012

WEBKIT

m Based on KHTML (KDE)
m Apple forked in 2001

m Chrome, (Mobile) Safari, Android Browser, Qt, PS 3 Vita, ...
m Rule of Thumb: If it’s not Internet Explorer or Firefox, it uses WebKit

m SLOC: 753,572 (Android 2.3.5)
m If that’s not enough: libpng, libtiff, ...

TCMALLOC

.‘i‘l.

-
-~ E oY%
-
“qM E“
— : A

»
—— t

Y
- - R \

g .- LY -l 3 >~ “ ™

P 2 - S - N e

3 Y i - '
i l { \ L

: | i

A - I

s

5

svm

.

.~

emegenerator.net

DLMALLOC

#if PLATFORM(ANDROID)
#define WEBCORE_NAVIGATOR_VENDOR "Google Inc."
#define USE_SYSTEM MALLOC 1

m bionic (Android’s libc) uses Doug Lea’s malloc
m This is the same allocator glibc uses
m Without safe unlinking checks

m DLmalloc coalesces adjacent free chunks
m No per thread caches or free-lists

DOCUMENT OBJECT MODEL TREE

What is the Document Object Model?

Editors
Philippe Le Hégaret, W3C
Lauren Wood, SoftQuad Software Inc., WG Chair
Jonathan Robie, Texcel (for DOM Level 1) %

W3C Recommer

Introduction

The Document Object Model (DOM) is an application programming interface (API) for valid HTML and well-formed XML documents. It defines the logical structure of documents and the way a document is
accessed and manipulated. In the DOM specification, the term "document” is used in the broad sense - increasingly, XML is being used as a way of representing many different kinds of information that may be
stored in diverse systems, and much of this would traditionally be seen as data rather than as documents. Nevertheless, XML presents this data as documents, and the DOM may be used to manage this data.

With the Document Object Model, programmers can build documents, navigate their structure, and add, modify, or delete elements and content. Anything found in an HTML or XML document can be accessed,
changed, deleted, or added using the Document Object Model, with a few exceptions - in particular, the DOM interfaces for the XML internal and external subsets have not yet been specified.

As a W3C specification, one important objective for the Document Object Model is to provide a standard programming interface that can be used in a wide variety of environments and applications. The DOM is
designed to be used with any programming language. In order to provide a precise, language-independent specification of the DOM interfaces, we have chosen to define the specifications in Object Management
Group (OMG) IDL [OMGIDL], as defined in the CORBA 2.3.1 specification [CORBA]. In addition to the OMG IDL specification, we provide language bindings for Java [Java] and ECMAScript [ECMAScript] (an

industry-standard scripting language based on JavaScript [JavaScript] and JScript [JScript]).

Note: OMG IDL is used only as a language-independent and implementation-neutral way to specify interfaces. Various other IDLs could have been used ([COM], [JavalDL], [MIDL], ...). In general, IDLs are
designed for specific computing environments. The Document Object Model can be implemented in any computing environment, and does not require the object binding runtimes generally associated with such

\
= 1 e o 5
‘ |52 Blements | \@_| Resources @ Network [j Scripts '{‘_%? Timeline (__ Profiles BAud'rhs |5 Console Q

¥ =html lang="en" xmlns="http://www.w3. 0rg/1999/xhtml"= « | # Computed Style _] Show inherited
» <head».</head> ¥ st supnr
yles + U 8-
¥ <body= W
»=div c " " align="center"=.=/div=
p=div © " int" style="text-align: right"=.</div=
¥ =div 1 " }
=@ 1d="Introductien" name="Introduction"=</a= Matched CSS Rules
<hl 1d="Introduction-hl" class="divl"=What 1s the Document Object h1 { W3C-REC. css: 39
» font: 170% sans-serif;
c "div2"=.=/div= 3
<l-- div2 ID-E7C3082 --= hl, h2, h3 { W3C-REC.css: 38
p<div class="div2"=.</div= color: IM#005ASC;
<l-- div2 ID-E7C30821 --= » background: white;
p =div class="div2"=.</div=
I8 | »= Q html | body div.div1 hi#introduction-h1.div1

element .style {

RENDER TREE

“At the heart of rendering is the render tree. The render tree is
very similar to the DOM in that it is a tree of objects, where each
object can correspond to the document, elements or text nodes.
The render tree can also contain addltlonal objects that have no

corresponding DOM node.

The base class of all render tree nodes is RenderObject.”

http://www.webkit.org/blog/114/webcore-rendering-i-the-basics/
http://www.webkit.org/blog/114/webcore-rendering-i-the-basics/
http://www.webkit.org/blog/114/webcore-rendering-i-the-basics/
http://www.webkit.org/blog/114/webcore-rendering-i-the-basics/
http://www.webkit.org/blog/114/webcore-rendering-i-the-basics/
http://www.webkit.org/blog/114/webcore-rendering-i-the-basics/
http://www.webkit.org/blog/114/webcore-rendering-i-the-basics/
http://www.webkit.org/blog/114/webcore-rendering-i-the-basics/
http://www.webkit.org/blog/114/webcore-rendering-i-the-basics/

RENDER OBJECT CREATION

m The Render Tree is updated every time rendering changes
m This includes when objects are repositioned and text flow changes
m Resizing Window, Scrolling (on Android anyway), ...

m A simple DOM Text Node can get additonal associated Render
Tree children just be resizing your window

» Allocations and deallocations happen very frequently

THE RENDERARENA

“YO DAWG, | HEARD YOU LIKE ALLOCATORS, SO | PUT AN
ALLOCATOR INTO YOUR ALLOCATOR, SO YOU CAN ALLOCATE
WHILE YOU’RE ALLOCATING!”

m RenderArena is the allocator for RenderObjects

m A RenderArena consists of multiple Arenas that
are allocated with... fastMalloc!

m Recall that fastMalloc is an alias for DLmalloc on
Android

RENDERARENA INTEGRATION

void* RenderObject::operator new(size t sz, RenderArena* renderArena) throw()

{

return renderArena->allocate(sz);

¥

m Every Render Tree element is derived from RenderObject
m operator new is inherited by every Render*

m All allocations for RenderObjects happen on the Arena sub-heap!
m Unfortunately, this means also nothing else can be allocated there.

RENDERARENA ALLOCATION

m Allocation sizes rounded up to 8 bytes
m Only for alignment, low bits are meaningless

m Attempts to recycle a free chunk of requested size
m Simple single-linked list, much like FreeList

m Simple forward allocation (current & limit pointers)
m No chunk headers or other inline information

RENDERARENA DEALLOCATION

L T [|

3 # 2 # 1

m Free chunks are put into a single-linked list
m Pointer to next free chunk is first 32bit word in chunk

m There is no coalescing of free chunks!
m This allows for easier (sub-)heap massaging

ENTER THE COALMINE

m There is a lot of bugs in the Render Tree
m And they are mostly considered “just crashes”

m Fixes are not backported for Android, takes some time until they end up
in Chrome mainline (after being public on Webkit Trac)

m Invalid Casts / Type Confusion
m Pass around RenderObject *, cast to Render® with wrong expectations

m Use-after-free
m Happens when stuff gets removed due to re-CSS-ing

USE-AFTER-FREE EXPLOITATION

“THE WICHERSKI”

m All allocations in the RenderArena are by definition C++ objects
m RenderObject has virtual functions, so all allocations have a vtable

m vtable overlaps with the free chunks single-linked list pointers

a. Free element that resembles fake vtable
b. Trigger free of buggy element, so it points to fake vtable
c. Trigger Use-After-Free virtual call

USE-AFTER-FREE EXPLOITATION

“THE WICHERSKI”

m It is extremely difficult to build a fake vtable with
RenderObjects

m RenderObjects are small and contain only pointers and
some CSS value copies

m CSS Values by definition have the high nibble
cleared

m The CSS code internally uses high 4 bits for flags
m Flags are cleared before values arrive in rendering code

USE-AFTER-FREE EXPLOITATION

“THE WICHERSKI”

m The heap is rwx on Android <2.2.1 and is reachable

m There is one plain integer that is copied
m List Item value (for setting numbered list item values)
m For our convenience, assigned to two consecutive members

m Read the code, we can even get a pointer to an
arbitrary long list of integers we control...

USE-AFTER-FREE EXPLOITATION

“THE REFINED AUBIZZIERE"”

m RenderArena allocations come from the system allocator
m We can control memory contents if not overwritten

a. Spray Arena sized objects (e.g. strings) and free holes
b. Free small dummy element at end of Arena
c. Trigger Use-After-Free virtual call

USE-AFTER-FREE EXPLOITATION

“THE REFINED AUBIZZIERE”

+ Enables arbitrary vtable contents

— Requires reliable heap allocation and free primitives
m We cannot “just create strings in JavaScript” because of GC
m unescape (praised by Immunity) is only one free
m DLmalloc will happily coalesce chunks, split large chunks, ...
m Have fun debugging this with GDB!

» We need something better (and faster) than GDB to
debug the heap allocations!

CROWDSTRIKE ANDROPROBE

AFD14520
A8403422 t . . \)
A84033EC ’ - !
A84033D4 i ! f) 3

malloc

free
AFDOAF78h
AFCFFO00h

pop {.., pc}

pop {.., pc}

LDR r3, =0002D0eCh

cloning constant #1 from AFD14524h
g LDR r2, =FFFFFF28h

constant #1 from AFD145

»LOI

g constant #1 from AFD145406h for load: LDR r3, =0002CFFeh
ng constant #1 from AFD14544h for load: LDR r2, =FFFFFF28h

48B07000h

Crouidd Sric

