Hacking the NFC credit cards for fun and debit ;)

Renaud Lifchitz – BT
renaud.lifchitz@bt.com
Hackito Ergo Sum 2012 – April 12, 13, 14 – Paris, France
Speaker's bio

• French computer security engineer working at BT

• Main activities:
 – Penetration testing & security audits
 – Security trainings
 – Security research

• Main interests:
 – Security of protocols (authentication, cryptography, information leakage, zero-knowledge proofs...)
 – Number theory (integer factorization, primality testing, elliptic curves...)
What is contactless payment?

- Everyday payment with no need for card insertion nor card PIN code
- Main systems: VISA payWave & MasterCard PayPass
- Small payments (for instance 4 times 20€ in a row)
- 100,000 payment terminals in France
- 10 millions NFC-enabled credit cards in the U.S.

“Hacking the NFC credit cards for fun and debit ;)”
Renaud Lifchitz – BT
Hackito Ergo Sum 2012 – April 12,13,14 – Paris, France
How to recognize an NFC-enabled credit card?

- Small wave logo printed on the card:
Contactless payment goals

-Achieve faster/simpler/easier payments

-Make people buy more
 (MasterCard Canada has seen “about 25 percent” higher spending by its PayPass users)

-Interoperable systems
Credit card standards

- Data storage and security: EMV standards (Europay MasterCard and VISA)
- Protocol commands and cards storage layout: ISO 7816 standards
EMV

- **Card memory:** a real filesystem with a root directory (MF), folders (DF) and files (EF) identified by 2 bytes, according to ISO 7816-4

- **Data encoding:** BER TLV (very near from ASN.1) → online decoder: http://www.emvlab.org/tlvutils/
ISO 7816-4

- **Requests - simplified command sets:**
 - Class (1 byte)
 - Instruction (1 byte)
 - Parameter 1 & 2 (1 byte each)
 - Length of data (1 byte)
 - Data field
 - Length of expected response (1 byte)

- **Answers:**
 - Data field
 - SW1 & SW2 error codes (1 byte each)

<table>
<thead>
<tr>
<th>Header</th>
<th>Body</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLA</td>
<td>INS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Body</th>
<th>Status Word</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Field</td>
<td>SW 1</td>
</tr>
</tbody>
</table>

“Hacking the NFC credit cards for fun and debit ;)”
Renaud Lifchitz – BT
Hackito Ergo Sum 2012 – April 12,13,14 – Paris, France
The idea

- French Navigo contactless transportation cards also use ISO 7816 encapsulation over RFID but:
 - No personal data on card (card ID ≠ cardholder ID)
 - Use good encryption
 - Use good authentication
 - Use digital signature

- RFID passports:
 - Use encryption
 - Use a combined reading to avoid rogue access (optical+RFID)

→ RFID credit cards (= money) should be as secure as those two, shouldn't they?
NO, BECAUSE THERE IS SIMPLY NO AUTHENTICATION NOR ENCRYPTION!!!
NFC

- Different names for nearly the same thing: RFID/NFC/Cityzi
- HF (13.56 Mhz) & LF (125-134 kHz) usages
- Most common HF protocol: ISO 14443 (ISO 14443-1 to ISO 14443-4)
- Can be used for tunneling/encapsulation

“Hacking the NFC credit cards for fun and debit ;)”
Renaud Lifchitz – BT
Hackito Ergo Sum 2012 – April 12, 13, 14 – Paris, France
NFC readers

- **USB readers:**
 - SCM SCL3711 (40€ dongle)
 - ACS ACR120U/ACR122U (flat)

- **Phones:**
 - Samsung Nexus S, Samsung Galaxy Nexus
 - BlackBerry Bold 9900/9930, BlackBerry Curve 9350/9360/9370
 - Nokia N9/C7/603

“Hacking the NFC credit cards for fun and debit ;)”
Renaud Lifchitz – BT
Hackito Ergo Sum 2012 – April 12,13,14 – Paris, France
Tools

- ISO 7816 (contact) prototyping: `scriptor`
- NFC (contactless) prototyping: `libnfc pn53x-tamashell`
- Final coding: `libnfc` (EOF, SOF and CRC are automagically handled)
Remotely available data

• Everything from EMV standards as if we had a contact interface?
• **Confirmed:**
 - Cardholder: gender, first name and last name
 - PAN (Primary Account Number)
 - Expiration date
 - Magnetic stripe data
 - Transaction history
• **Probably:** general card information (issuer, public keys, …)
• But no CVV! (just a one-time-CVV functionality)
Possible attacks

- Read victim's card data and use it on e-commerce websites: CVV is not always mandatory and CVV can be bruteforced (only 1000 possibilities...)
- Remote card DoS? (send 3 times a bad PIN code)
- Create a magnetic stripe dump remotely (card clone will be useful where chip card/PIN is not mandatory: most EU countries, USA, …)
- User identification and tracking (terrorism...)

“Hacking the NFC credit cards for fun and debit ;)”
Renaud Lifchitz – BT
Hackito Ergo Sum 2012 – April 12,13,14 – Paris, France
Typical libnfc attack sequence

1) Initiator List Passive Targets (wake up card!):
 - 4A 01 00

2) Select banking application (AID):
 - 40 01 00 A4 04 00 07 A0 00 00 00 42 10 10 00

3) Read specific EMV record:
 - 40 01 00 B2 02 0C 00 00

"Hacking the NFC credit cards for fun and debit ;)
Renaud Lifchitz – BT
Hackito Ergo Sum 2012 – April 12,13,14 – Paris, France
AID selection

• Some well known AIDs:
 - Visa debit/credit: A0 00 00 00 03 10 10
 - MasterCard credit: A0 00 00 00 04 10 10
 - American Express: A0 00 00 00 25 00 00
 - CB: A0 00 00 00 42 10 10

• Be careful: EF ids can vary accordingly!
Proof of Concept

“Hacking the NFC credit cards for fun and debit ;)
Renaud Lifchitz – BT
Hackito Ergo Sum 2012 – April 12, 13, 14 – Paris, France
“Hacking the NFC credit cards for fun and debit ;)

Renaud Lifchitz – BT
Hackito Ergo Sum 2012 – April 12,13,14 – Paris, France
Proof of Concept – Android smartphone

<table>
<thead>
<tr>
<th>Transaction Date</th>
<th>Type</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/04/2012</td>
<td>Paiement</td>
<td>24,50€</td>
</tr>
<tr>
<td>06/04/2012</td>
<td>Paiement</td>
<td>73,00€</td>
</tr>
<tr>
<td>05/04/2012</td>
<td>Retrait</td>
<td>60,00€</td>
</tr>
<tr>
<td>05/04/2012</td>
<td>Paiement</td>
<td>7,85€</td>
</tr>
<tr>
<td>02/04/2012</td>
<td>Paiement</td>
<td>6,95€</td>
</tr>
<tr>
<td>30/03/2012</td>
<td>Paiement</td>
<td>30,00€</td>
</tr>
<tr>
<td>30/03/2012</td>
<td>Retrait</td>
<td>60,00€</td>
</tr>
<tr>
<td>30/03/2012</td>
<td>Paiement</td>
<td>59,90€</td>
</tr>
<tr>
<td>26/03/2012</td>
<td>Paiement</td>
<td>70,00€</td>
</tr>
<tr>
<td>24/03/2012</td>
<td>Paiement</td>
<td>40,88€</td>
</tr>
<tr>
<td>23/03/2012</td>
<td>Paiement</td>
<td>108,07€</td>
</tr>
<tr>
<td>21/03/2012</td>
<td>Paiement</td>
<td>47,00€</td>
</tr>
<tr>
<td>20/03/2012</td>
<td>Paiement</td>
<td>9,40€</td>
</tr>
<tr>
<td>14/03/2012</td>
<td>Paiement</td>
<td>48,00€</td>
</tr>
<tr>
<td>14/03/2012</td>
<td>Paiement</td>
<td>18,35€</td>
</tr>
<tr>
<td>14/03/2012</td>
<td>Paiement</td>
<td>35,50€</td>
</tr>
<tr>
<td>11/03/2012</td>
<td>Paiement</td>
<td>21,00€</td>
</tr>
<tr>
<td>11/03/2012</td>
<td>Paiement</td>
<td>24,50€</td>
</tr>
<tr>
<td>11/03/2012</td>
<td>Retrait</td>
<td>90,00€</td>
</tr>
<tr>
<td>11/03/2012</td>
<td>Paiement</td>
<td>45,00€</td>
</tr>
</tbody>
</table>

“Hacking the NFC credit cards for fun and debit ;)”

Renaud Lifchitz – BT

Hackito Ergo Sum 2012 – April 12,13,14 – Paris, France
Attack limitations

• Main limitation is the distance
• ISO 14443 standards state:
 - Active read up to 3 to 5cm in practice
• But tweaking the devices:
 - Active read up to 1.5m (50x better!) using a dedicated amplifier (2000€) and antenna (1000€). Everything fits into a backpack...
 - Passive sniffing up to 15m (500x better!) using a radio receiver (e.g. USRP) with a standard telescopic antenna
• Remember: in August 2004, hackers succeeded in extending a Bluetooth dongle range from 10m to 1,7km! (http://trifinite.org/trifinite_stuff_lds.html)

"Hacking the NFC credit cards for fun and debit ;)
Renaud Lifchitz – BT
Hackito Ergo Sum 2012 – April 12,13,14 – Paris, France"
Passive sniffing

Reader probes, communication with the credit card, and then probes again
How to protect?

“Hacking the NFC credit cards for fun and debit ;)

Renaud Lifchitz – BT
Hackito Ergo Sum 2012 – April 12,13,14 – Paris, France
How should security be?

- Contactless accesses should be authenticated to avoid rogue readers
- Contactless protocol should be encrypted to avoid eavesdropping
- Session integrity should be ensured (e.g. HMAC) to avoid injection

This already exists!!!
(for example French Navigo transportation card)

Conclusion: EMV is poorly designed for NFC and needs a complete rewrite!...
Regulatory compliance

- 2 major regulatory issues due to this lack of security:
 - PCI DSS compliance
 - Personal data protection
PCI DSS compliance (1/3)

- Intended for organizations that handle cardholder information (merchants, financial institutions, software & hardware developers, industry professionals...)

- “PCI Data Security Standard” is a multifaceted security standard that includes requirements for security management, policies, procedures, network architecture, software design and other critical protective measures. This comprehensive standard is intended to help organizations proactively protect customer account data. (https://www.pcisecuritystandards.org)

- PCI DSS is sponsored by the same who have designed and distributed NFC credit cards (Visa, MasterCard, ...) in order to avoid fraud
PCI DSS compliance (2/3)

- Requirement 4 of PCI DSS - "Encrypt transmission of cardholder data across open, public networks":
 - Scope: all wireless technologies
 - Testing Procedure 4.1.a: “Select a sample of transactions as they are received and observe transactions as they occur to verify that cardholder data is encrypted during transit.”

- Unsolicited accesses and most solicited accesses to the credit cards are CLEARTEXT AND INCLUDE CARDHOLDER DATA

This is a MAJOR FAIL!
NFC payments are not compliant with PCI DSS and organizations can become non-compliant by accepting them...
PCI DSS compliance (3/3)

- However, one of the 2 biggest credit card supplier states in its public FAQ that “technically, the contactless functionality (...) protects cardholder information using very secured dynamic cryptograms”

- Indeed, it's cleartext!!!
Personal data protection

• In France, it is a criminal offense not to protect personal data when you handle them
• You also have to comply with EU regulatory constraints on personal data protection
• CNIL, a French public organization is responsible to report offenses

That's why credit card suppliers probably don't comply with French law too!...
Timeline of discovery

- December 2nd, 2011: My discovery
- I notify my personal bank during the following week. They thanked for the step but since I have no news
- January 30, 2012: Kristin Paget shows something quite similar at Shmoocon, using dedicated commercial hardware
- A bit later, French GIE CB officially states that they are aware of risks with NFC credit cards
- April 3, 2012: I notify some other banks, the French Ministry of Finance and the CNIL during a short demo (GS Days 2012, Paris)
- Investigations are currently being made by these organizations and law enforcement
Legal context related to French law

• This is NOT reverse engineering: EMV standard is available to everybody for a long time. The proof of concept is just a small EMV implementation

• This is NOT made for counterfeits: We have just extracted personal information that already belongs to us, and this is neither not necessary nor sufficient for counterfeits

• We HAVEN'T BROKEN any security or tried to, because there is none!
Thanks!

Any questions?