Strange and Radiant Machines in the PHY Layer

Travis Goodspeed Sergey Bratus

Neighbors for the Liberation of Weird Machines

April 12, 2012

Это Сибирь, детка

Goodspeed/Bratus HES2012

Phrack 49:19

- strcat() overwrite the return pointer.
- foo() returns to the wrong place.
- Some of the string is executed as code.

Nowadays, you need more tricks.

- Heap Feng Shui to control heap alignment.
- Jit Spraying to produce shellcode in executable region.
- Return-Oriented-Programming to repurpose existing code.

Nowadays, you need more tricks.

- Heap Feng Shui to control heap alignment.
- Jit Spraying to produce shellcode in executable region.
- Return-Oriented-Programming to repurpose existing code.
- None of these are useful in isolation.
- None of these were useful in 1996.
- All of these are useful in 2012.

Fingerprinting to Attack Hardware

- Just like software, hardware has bugs.
- Unlike software, these bugs are poorly understood.
- Document everything strange, find what's useful later.

Fingerprinting to Attack Hardware

- Just like software, hardware has bugs.
- Unlike software, these bugs are poorly understood.
- Document everything strange, find what's useful later.

Strange and Radiant Machines

- Strange Machines:
- Might not be useful.
- ANYTHING and EVERYTHING unexpected qualifies.

Strange and Radiant Machines

- Strange Machines:
- Might not be useful.
- ANYTHING and EVERYTHING unexpected qualifies.
- Radiant Machines:
- Were useful once in writing one exploit.
- Most of these seem useless out of context.

The OSI Model gives attacker control of *inside* of packet.

- The OSI Model gives attacker control of *inside* of packet.
- Radio receivers suffer false positives, false negatives.

- The OSI Model gives attacker control of *inside* of packet.
- Radio receivers suffer false positives, false negatives.
- Instructions have maximum clock frequencies.

- The OSI Model gives attacker control of *inside* of packet.
- Radio receivers suffer false positives, false negatives.
- Instructions have maximum clock frequencies.
- Flash has different voltage tolerances than RAM or ROM.

- The OSI Model gives attacker control of *inside* of packet.
- Radio receivers suffer false positives, false negatives.
- Instructions have maximum clock frequencies.
- Flash has different voltage tolerances than RAM or ROM.
- Regions of a chip have different power supplies.

PHY-Layer Exploits

Packet in Packet

Radiant Machines of Packet in Packet

- The OSI Model gives attacker control of inside of packet.
- Radio receivers suffer false positives, false negatives.

Radiant Machines of Packet in Packet

- The OSI Model gives attacker control of inside of packet.
- Radio receivers suffer false positives, false negatives.
- For the Zigbee/802.15.4 implementation,
- Packets length may vary.
- The same symbol set is used for payload and headers.


```
        OO 00 00 00 a7 0f 01 08 82 ff ff ff ff

        Preamble
        Sync
        Body

        00 00 00 00 a7 0f 01
        Preamble
        Sync Body
```


Radiant Machines of Packet in Packet

- The OSI Model gives attacker control of inside of packet.
- Radio receivers suffer false positives, false negatives.
- For the Zigbee/802.15.4 implementation,
- Packets length may vary.
- The same symbol set is used for payload and headers.

Kiss your security goodbye

	Dev Pac ice ket Mod typ typ el e e				Sequen ce ID		Flags/ Meta			HID Cod						Che cks um
P	OA	78	06	01	OF	00	43	00	00	05	00	00	00	00	00	_
ĸ					CD	98	35	0A	C0	CD	98	35	0A	CO	CD	
	OA	78	0.6	01	C2	98	76	OA	CO.	C8	98	35	0A	CO	CD	58

(Key-Down) Packet with device address CD 98 35 0A C0

digital v00d00 - 8th of December 2010 Thorson Schröder Max Hoser

Keykeriki 2.0, http://www.remote-exploit.org/ Max Moser and Thorsten Schroeder

GoodFETNRF

- Travis Goodspeed analyzed TurningPoints ResponseCard RF "Clicker cards"
- Reprogrammed "The Next HOPE" batches using its GODFET
 - http://travisgoodspeed.blogspot.com/2010/06/hacking-next-hope-badge.html
 - Capable of "sniffing" OpenBeacon protocol
 - Jamming frequencies by sending NRF constant carrier wave
- "Although some architectural limitations of the NRF24L01+ make sniffing difficult without knowing the first three bytes of the destination MAC address to be sniffed"
 - That's because there is no documented way how to get layer2 access using this chip
- Still cool way if you know the address. Python code to interface with the GoodFET Firmware is available at http:// sourceforge.net/projects/goodfet/files/.

digital v00d00 - 8th of December 2010

- Keykeriki needed custom hardware to sniff at 2Mbps.
- Couldn't match in hardware because SYNC is unknown.
- With a trick similar to PIP, we can do it on cheap hardware.
- First, cause false-positive matches before the packet.
- Second, disable the CRC.


```
air-2% goodfet.nrf autotune
Autotuning as 0000000055 on 2499 MHz
sync,mac,r5,r6
Tuned to 2488 MHz
Tuned to 2481 MHz
'55,0102030201,51,09' looks valid 1 0.00820
'55,0102030201,51,09' looks valid 2 0.01600
'55,0102030201,51,09' looks valid 3 0.02326
'55,0102030201,51,09' looks valid 4 0.02837
Tuned to 2482 MHz
Tuned to 2483 MHz
```


Radiant Machines of POOP

- Radio receivers suffer false positives, false negatives.
- For the MSKB implementation,
- Address length is arbitrary on the receiver.
- Checksums can be disabled.
- The preamble is predictable.
- Preamble damage is not fatal to reception.

Radiant Machines in Power Supplies

- Flash has different voltage tolerances than RAM or ROM.
- Regions of a chip have different power supplies.

Radiant Machines in Power Supplies

- Flash has different voltage tolerances than RAM or ROM.
- Regions of a chip have different power supplies.

Other Vulnerabilities

Packets in Packets:
Orsen Welles' In-Band Signaling Attack for Digital Radios http://packetsinpackets.org/

- Packets in Packets:
 Orsen Welles' In-Band Signaling Attack for Digital Radios http://packetsinpackets.org/
- Promiscuity is the NRF24L01+'s Duty http://travisgoodspeed.blogspot.com/

- Packets in Packets:
 Orsen Welles' In-Band Signaling Attack for Digital Radios http://packetsinpackets.org/
- Promiscuity is the NRF24L01+'s Duty http://travisgoodspeed.blogspot.com/
- Freescale MC13224 Memory Extraction http://travisgoodspeed.blogspot.com/

- Packets in Packets:
 Orsen Welles' In-Band Signaling Attack for Digital Radios http://packetsinpackets.org/
- Promiscuity is the NRF24L01+'s Duty http://travisgoodspeed.blogspot.com/
- Freescale MC13224 Memory Extraction http://travisgoodspeed.blogspot.com/
- Language-Theoretic Security http://langsec.org/

Questions